Interior Angle Investigation

Today, I noticed a pattern in the difference between interior angles of regular polygons. This led to an investigation on Sheets to try and find the pattern. Finally, we tried to figure out if the pattern is exponential or linear. The pattern is. (Sorry. Almost forgot that the conclusion comes after the results!)

Number of SidesInterior Angle(°)Difference to Previous Interior Angle (°)
360.0000.000
490.00030.000
5108.00018.000
6120.00012.000
7128.5718.571
8135.0006.429
9140.0005.000
10144.0004.000
11147.2733.273
12150.0002.727
13152.3082.308
14154.2861.978
15156.0001.714
16157.5001.500
17158.8241.324
18160.0001.176
19161.0531.053
20162.0000.947
21162.8570.857
22163.6360.779
23164.3480.711
24165.0000.652
25165.6000.600
26166.1540.554
27166.6670.513
28167.1430.476
29167.5860.443
30168.0000.414
31168.3870.387
32168.7500.363
33169.0910.341
34169.4120.321
35169.7140.303
36170.0000.286
37170.2700.270
38170.5260.256
39170.7690.243
40171.0000.231
41171.2200.220
42171.4290.209
43171.6280.199
44171.8180.190
45172.0000.182
46172.1740.174
47172.3400.167
48172.5000.160
49172.6530.153
50172.8000.147
51172.9410.141
52173.0770.136
53173.2080.131
54173.3330.126
55173.4550.121
56173.5710.117
57173.6840.113
58173.7930.109
59173.8980.105
60174.0000.102
61174.0980.098
62174.1940.095
63174.2860.092
64174.3750.089
65174.4620.087
66174.5450.084
67174.6270.081
68174.7060.079
69174.7830.077
70174.8570.075
71174.9300.072
72175.0000.070
73175.0680.068
74175.1350.067
75175.2000.065
76175.2630.063
77175.3250.062
78175.3850.060
79175.4430.058
80175.5000.057
81175.5560.056
82175.6100.054
83175.6630.053
84175.7140.052
85175.7650.050
86175.8140.049
87175.8620.048
88175.9090.047
89175.9550.046
90176.0000.045
91176.0440.044
92176.0870.043
93176.1290.042
94176.1700.041
95176.2110.040
96176.2500.039
97176.2890.039
98176.3270.038
99176.3640.037
100176.4000.036

As the number of sides increase, the interior angle increases. The difference between the interior angles decreases inversely to the number of sides. As the interior angles grow, the difference between them gets smaller. By using these statements and the results, we created a formula for finding the difference between interior angles (x) with the number of sides (n):

x=360÷(n2+n)

The pattern involving the number of sides and difference between interior angles is quadratic. This is due to the highest exponent (power) being 2. Specifically, this pattern is an example of quadratic decay because the difference decreases inversely with the square of the number of sides.

Leave a comment